Anchoring a lander on an asteroid using foam stabilization, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a significant amount of gravity, most near-earth asteroids are small and show a surface gravity of less than 0.1% of earth. Landing, and staying on the surface of such a small object is a challenge, especially for manned missions. Just the movement of an astronaut in and out of the lander during excursions would most likely dislodge the vehicle. Similarly, drilling for a sample return mission requires the ability to exert force onto the surface without pushing the lander off the surface. A solid anchoring system is required, but made difficult due to the potentially rubble-like consistency of small asteroids, which makes classic mechanical anchoring difficult. Adherent Technologies, Inc. (ATI) has developed innovative materials for space use for over a decade. These include inflatable structures, self-sealing membranes, coatings for satellites and solar sails, and vacuum-deployable foams. The proposed program will combine these technologies to produce an anchoring system that deploys either a sticky screen that can attach to a solid rock formation or a foam injection anchor that can bind a large amount of rubble as an anchoring point. The system is modular, and a decision which anchoring method to use only needs to be made on location.

Primary U.S. Work Locations and Key Partners

Anchoring a lander on an asteroid using foam stabilization, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Anchoring a lander on an asteroid using foam stabilization, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Adherent	Lead	Industry	Albuquerque,
Technologies, Inc.	Organization		New Mexico
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
New Mexico	Ohio

Project Transitions

May 2013: Project Start

November 2013: Closed out

Closeout Summary: Anchoring a lander on an asteroid using foam stabilizatio n, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138005)

Images

Briefing Chart Image

Anchoring a lander on an asteroid using foam stabilization, Phase I (https://techport.nasa.gov/imag e/126873)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Adherent Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Jan-michael Gosau

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Anchoring a lander on an asteroid using foam stabilization, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - ☐ TX07.1.1 Destination Reconnaissance and Resource Assessment

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

